
Academic Editors: Louisa

Alexandra Messenger and

Mojca Kristan

Received: 1 July 2025

Revised: 12 September 2025

Accepted: 3 October 2025

Published: 28 October 2025

Citation: Carney, R.M.; Azam, F.;

Gehrisch, K.; Bhuiyan, T.; Rafarasoa,

L.S.; Riantsoa, V.; Low, R.D.; Zohdy, S.;

Andrianjafy, T.M.; Ramahazomanana,

M.A.; et al. Artificial Intelligence and

Citizen Science as a Tool for Global

Mosquito Surveillance: Madagascar

Case Study. Insects 2025, 16, 1098.

https://doi.org/10.3390/

insects16111098

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Artificial Intelligence and Citizen Science as a Tool for Global
Mosquito Surveillance: Madagascar Case Study
Ryan M. Carney 1,* , Farhat Azam 2 , Karlene Gehrisch 1, Tanvir Bhuiyan 2, Lala S. Rafarasoa 3 ,
Valéry Riantsoa 3 , Russanne D. Low 4 , Sarah Zohdy 5, Tovo M. Andrianjafy 3, Mamisoa A. Ramahazomanana 3,
Ranto N. Rasolofo 3, Pradeep A. Subramani 6 , Madison Ogbondah 6, Johnny A. Uelmen, Jr. 1,7

and Sriram Chellappan 2

1 Department of Integrative Biology, University of South Florida (USF), Tampa, FL 33620, USA;
karlenegehrisch@gmail.com (K.G.); uelmen@wisc.edu (J.A.U.J.)

2 Bellini College of AI, Cybersecurity and Computing, University of South Florida, Tampa, FL 33620, USA;
farhatbinte@usf.edu (F.A.); tanvirrazin@gmail.com (T.B.); sriramc@usf.edu (S.C.)

3 Department of Medical Entomology, University of Antananarivo, Antananarivo 101, Madagascar;
rafarasoalala@yahoo.fr (L.S.R.); riantsoav@gmail.com (V.R.); amthta@gmail.com (T.M.A.);
ramahazomanana2@gmail.com (M.A.R.); rantorasolofo01@gmail.com (R.N.R.)

4 Institute for Global Environmental Strategies, Arlington, VA 22202, USA; rusty_low@strategies.org
5 Entomology Branch, US Centers for Disease Control and Prevention, Atlanta, GA 30329, USA;

sarahzohdy@gmail.com
6 Global Health and Infectious Disease Research, University of South Florida, Tampa, FL 33612, USA;

pannamalaisubramani@usf.edu (P.A.S.); madison541@usf.edu (M.O.)
7 Department of Population Health Sciences, University of Wisconsin (UW), Madison, WI 53575, USA
* Correspondence: ryancarney@usf.edu

Simple Summary

Malaria is a devastating mosquito-transmitted disease that infects over 250 million people
and kills more than 600,000 every year. One mosquito of great global concern is Anopheles
stephensi, an invasive species on the African continent. Unlike native malaria mosquitoes
in Africa, this urban-adapted species can breed in artificial containers such as tires and
buckets. Early detection of this mosquito is critical for rapid response to prevent increases
in malaria; however, traditional surveillance and identification methods may overlook
this invasive species. Therefore, we developed artificial intelligence (AI) programs to
identify An. stephensi using photographed mosquito larvae (similar to the concept of facial
recognition), since the most common method for An. stephensi surveillance is through the
collection of larvae. As a practical proof-of-concept, these tools were used on a photo of a
mosquito larva collected from a tire in Madagascar years earlier by local residents, who
uploaded this and similar observations to a NASA app. While molecular confirmation
is no longer possible on these long-discarded larval specimens, the successful use of AI
programs to analyze mobile device photos provides a new opportunity to leverage citizen
science for larval surveillance, even after the opportunity for physical collection has passed.
Ultimately, this study demonstrates the value of integrating AI and citizen science to fight
mosquito-borne diseases around the world.

Abstract

Anopheles stephensi is an invasive and deadly malaria vector with the ability to use artificial
containers as larval habitats. This ability is unique for malaria vectors in Africa and
requires distinct surveillance strategies for early detection and rapid response. In this
study, we trained a variety of artificial intelligence (AI) image recognition algorithms,
using thousands of smartphone photos of laboratory-authenticated An. stephensi and seven
endemic mosquito species, to develop a citizen science-friendly tool for An. stephensi
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detection. In Antananarivo, Madagascar, citizen science observations of >132 Anopheles spp.
larvae from multiple artificial containers—including one closeup photo of a larva, from
a tire—were submitted via NASA’s GLOBE Observer app in March 2020 and discovered
years later. Given that genetic testing was no longer possible, this photo was used as a
proof-of-concept to determine whether the AI species identification could be used on citizen
science-generated images. The tire larva was classified as An. stephensi by all 11 species
models, which yielded high accuracy and confidence (up to 99.34%) and included a false
positive rate of <1%. Furthermore, explainable AI (XAI) heat maps led to the discovery
of dark spots in abdominal segment VI corresponding to testes, corroborating a separate
classification of the tire larva as male by the sex model. All available evidence suggests
that AI image identification would have flagged this larva as a suspect An. stephensi, which
could have been submitted to a molecular laboratory for further confirmation. Results
demonstrate the power of integrating citizen science and AI—for which we provide free
online tools—as a low-cost signal for malaria programs to confirm and respond to, and
as complementary surveillance to fill the critical knowledge gaps in the distribution of
invasive An. stephensi across Africa and beyond.

Keywords: Anopheles; artificial intelligence; citizen science; larva; machine learning; Mada-
gascar; malaria; mobile applications; mosquito vectors; testes

1. Introduction
The presence and invasion of the Anopheles mosquitoes that transmit human malaria

parasites are of accelerating global concern. The World Health Organization (WHO) reports
that in 2020 alone, there were 241 million cases of malaria resulting in 627,000 deaths,
including almost half a million children under the age of five [1]. In Madagascar specifically
from 2019 to 2020, confirmed malaria cases and estimated deaths both unexpectedly
doubled—to their highest numbers in at least two decades—with cases increasing by
~1 million and suspected cases reaching nearly 4 million [1]. From 2015 to 2020, Madagascar
had by far the largest increase in both malaria incidence and mortality rates of any of the
11 east/south African countries with high transmission (approx. +38%, +43%; [1]). Malaria
is a top-five cause of death in Madagascar, and the entire population of 33 million is at
risk [2,3].

Malaria control in Africa faces serious challenges due to many factors, including
the recent emergence of the invasive Anopheles stephensi (Liston, 1901) [4]. Although the
full extent of An. stephensi distribution throughout the continent is unknown, confirmed
specimens have so far been collected in Djibouti (2012), Ethiopia (2016), Sudan (2016),
Somalia (2019), Nigeria (2020), Eritrea (2021), Kenya (2022), Ghana (2022) [4], and Niger
(2024) [5]. In Djibouti from 2012 to 2020, reported malaria cases dramatically increased
from only 27 to 73,535 [1], and epidemiological evidence has linked An. stephensi to
malaria outbreaks in Djibouti and Ethiopia [6,7]. Exacerbating this epidemic crisis, An.
stephensi is unusually susceptible to malaria parasites Plasmodium falciparum (Welch, 1897)
and P. vivax (Grassi & Feletti, 1890) [8], and is highly resistant to pesticides [9]. The
latter underscores the importance of vigilant surveillance and eliminating standing water
habitats—in which mosquitoes oviposit (lay eggs) and develop as larvae and pupae—to
prevent catastrophic malaria outbreaks. Indeed, it is estimated that An. stephensi will put
an additional 126 million people in Africa at risk of malaria if left uncontrolled [10].

Thus, there is an urgent need for enhanced surveillance to identify the introductions
and expanding distributions of An. stephensi across Africa [4], and control efforts will rely
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heavily on early detection of this invasive and fast-spreading species in new locations.
Rapid response is especially critical before the mosquito population adapts and establishes
itself beyond control. For example, five years after detection in Djibouti, An. stephensi
was detected year-round, not just during the rainy season [11]. Six years after detection
in Ethiopia, An. stephensi was directly associated with an urban malaria outbreak and
comprised 97% of the adult mosquitoes collected [7]. This species has not yet been reported
from Madagascar. However, among the coastal African countries, Madagascar is ranked as
the sixth-highest risk of invasion by An. stephensi based on indices of maritime trade and
habitat suitability [12], and the capital city of Antananarivo (pop. 2.5 M) is highly suitable
for An. stephensi [10].

Unlike most endemic African malaria vectors that use natural breeding habitats such
as puddles and rice paddies, An. stephensi is well-adapted to urban environments and
can oviposit and develop in water within artificial containers. This ability is similar to
that of Aedes aegypti (Linnaeus, 1762) and Ae. albopictus (Skuse, 1895), which are the
principal vectors of dengue, yellow fever, and Zika. Indeed, one study in Ethiopia reported
Aedes larvae in 40% of the sites where An. stephensi larvae were found [9]. Such artificial
container-breeding mosquitoes are difficult to mitigate, as they opportunistically lay eggs
in containers of all sizes, and locating these often-cryptic oviposition sites is labor-intensive
for mosquito control professionals. Artificial containers also enable An. stephensi to persist
throughout both dry and rainy seasons, a unique trait for malaria vectors which enables
year-round transmission, confounds seasonal interventions, and is further enhanced by this
species’ resilience to thermal extremes [13,14]. Due to challenges in collecting An. stephensi
adults—specifically that human landing catches and CDC light traps are not successful
in capturing An. stephensi [15] like they are in capturing routine Anopheles vectors—most
efforts for the detection of this invasive species are based on larval surveillance [14,16].

For scaling such mosquito surveillance beyond traditional methods, citizen science
(also known as community science) can be a useful and cost-effective approach [17–19].
Here, we describe a case study in Madagascar that integrates citizen science imagery with
novel AI algorithms, as a complementary tool for larval surveillance.

2. Materials and Methods
2.1. GLOBE Observer

NASA/GLOBE Program’s GLOBE Observer (observer.globe.gov, accessed on 6 August
2025) is a mobile application with a Mosquito Habitat Mapper tool that enables citizen
scientists to systematically describe and report observations of mosquito-breeding habitats
(standing water) and associated larvae and pupae [20,21]. Available as a no-cost download
to the public in 127 countries and 16 languages, the GLOBE Observer platform supports
a suite of environmental monitoring tools including Clouds, Land Cover, and Trees, in
addition to the Mosquito Habitat Mapper. Used together, these tools report data that allow
scientists to understand the dynamics of mosquito populations across a varied landscape,
ranging from urban to rural to natural environments.

Observations made using the GLOBE Observer tools are uploaded to the GLOBE
database (1995-), which currently archives more than 270 million environmental measure-
ments contributed by both GLOBE student participants and citizen scientists. Participation
in the GLOBE Program is implemented through bilateral agreements between the U.S.
government and governments of participating nations. All data archived by GLOBE are
open and can be freely accessed online via application programming interfaces, through
either the GLOBE Advanced Data Access Tool or the GLOBE Visualization System, an
interactive map interface that allows users to filter, view, and download spatial data.
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The Mosquito Habitat Mapper tool was beta-tested May–July 2017 and March–April
2018 in six communities in Brazil and Peru at high risk for Zika and dengue outbreaks, with
support from the United States Agency for International Development program, Combating
Zika and Future Threats: A Grand Challenge for Development. From 2018 to 2021, the
follow-up GLOBE Zika Education and Prevention Project enlisted thousands of students,
teachers, and communities to collect data on mosquitoes for a global mapping project
and to connect with their community public health officials for disseminating educational
information. More than 20 countries from Africa, Asia and the Pacific, and Latin America
and the Caribbean were identified by the U.S. Department of State as high risk for Zika
transmission and were supported in this effort through in-person training workshops and
provisioning of supplies, including 60× clip-on lenses used to photograph mosquito larvae
encountered during surveillance.

The Mosquito Habitat Mapper tool also includes a larva identification guide. As
illustrated therein, Anopheles are relatively easy to identify at the genus level as they are the
only mosquito larvae without a respiratory siphon.

2.2. Madagascar Observations

Given the recently escalating An. stephensi crisis, R.D.L. searched the Mosquito Habitat
Mapper dataset by filtering observations using four criteria: within Africa, includes at
least one photo of a larva, identified by the user as Anopheles, and collected from an
artificial container; the resulting photos were downloaded and manually examined (see
also [21]). One such photo of a potential An. stephensi was discovered, from years earlier
in Madagascar.

This and nearby observations (Figure 1) were the result of larval monitoring and
mitigation efforts targeting the artificial container-breeding Zika vector Ae. albopictus in
urban areas, specifically the University of Antananarivo (UA) campus and its immediate
surroundings, undertaken by the EntoAnkatso team led by L.S.R. during the GLOBE Zika
Education and Prevention Project from October 2019–April 2020 [21,22]. As part of that
project, during the 23rd GLOBE Annual Meeting in Detroit, Michigan, USA in July 2019,
L.S.R. had been provided with approximately twenty 60× clip-on lenses that her team later
used to photograph larvae in Madagascar.

On 8 March 2020, the aforementioned Anopheles spp. larva was collected from a tire
and photographed (Figure 1) by L.S.R. and V.R. using a Samsung (Seoul, Republic of Korea)
Galaxy Tab A tablet with a 60× clip-on lens. Per the app guidelines, this larva was late-
stage, either third (L3) or fourth (L4) instar. One photo of two tires was also submitted. A
total of five Anopheles spp. larvae were reported; no larvae from other genera were reported.
Also observed were mosquito adults, but no eggs or pupae.

Within 100 m of the tires on that same day, L.S.R. and V.R. observed other Anopheles
larvae in artificial containers. One observation included two metal barrels, one of which
contained 27 Anopheles spp. and 5 Ae. albopictus (the latter reared to adulthood); two photos
of an Ae. albopictus larva were uploaded (Figure 1). The other observation was a 10 L
bucket containing 486 mosquito larvae, of which >100 were Anopheles spp.; two photos of
an Ae. albopictus larva were uploaded (Figure 1). All of these larvae were transferred into
a glass jar, a photo of which was included with six photos of a Culex quinquefasciatus (Say
1823) larva and uploaded from a different location on 26 March 2020. Both the barrel and
bucket observations reported the presence of pupae and adults, but no eggs. The breeding
habitats from the tire, barrel, and bucket observations were marked as eliminated, meaning
that the water and/or artificial containers were removed.
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Figure 1. Global Mosquito Observations Dashboard (GMOD) (mosquitodashboard.org, accessed
on 2 May 2025). Map displays Mosquito Habitat Mapper observations (dots), with labels denoting
the three locations where >132 Anopheles spp. larvae were found in various artificial containers on 8
March 2020. Panel at right displays the tire containing 5 Anopheles spp. larvae, including the only
closeup photo of an anopheline larva (“tire larva” herein; red dot on map). Note absence of siphon.
Below are the original bucket and glass jar containing 486 transferred mosquito larvae—including
>100 Anopheles spp. (not individually photographed) in addition to Ae. albopictus (note siphon) and
Culex quinquefasciatus (note long siphon; arrow in third panel)—and the metal barrel containing
27 Anopheles spp. (not photographed) and 5 Aedes albopictus. Four of the remaining dots on the map
represent ovitraps reported on 2 April 2020. At top right are counts of citizen science observations
from each app platform, filtered to Madagascar; full details on the GMOD are available at [18,23].
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Unfortunately, given that these observations were all from 2020, and the specimens
were not preserved, morphological and molecular species confirmation was not possible.
Another challenge was that only one Anopheles larva had been photographed close up,
given the common practice that only one larva is examined through the app, and that the
target for this surveillance was the Zika vector, Ae. albopictus. While larvae of the genus
Anopheles are easy to identify (given the aforementioned diagnostic absence of a siphon), it
is difficult to distinguish among the species. Additionally, there is no sufficient taxonomic
key for identifying larval An. stephensi by the naked eye or at low magnification. As a
solution, we leveraged a variety of AI techniques to provide empirical and explainable
predictions for identifying the species and sex of the photographed Anopheles larva. For
other recent work on larval classification using AI, see [20,24].

2.3. Larvae
2.3.1. Centers for Disease Control and Prevention

As the Anopheles source for the Biodefense and Emerging Infections Research Resources
Repository, the Malaria Research and Reference Reagent Resource (MR4) center provided
mosquitoes reared according to the MR4 manual [25]. All species were authenticated
for purity every five generations to ensure no contamination. The species and strains
photographed included Ae. aegypti (KHW), Ae. albopictus (ATMNJ95), An. arabiensis (Patton,
1905) (Rufisque), An. funestus (Giles, 1900) (Fang for L3, Fumoz for L4), An. gambiae (Giles,
1902) (Ndokayo for L3, Kisumu for L4), An. stephensi (SDA-500), Cx. quinquefasciatus (JHB),
and Cx. tarsalis (Coquillett, 1896) (Yolo). As described in Imaging below, every species was
represented by 35 specimens each of L3 and L4 larvae, yielding at minimum 420 photos
for each class (i.e., each combination of species × instar). Additionally, all photos from
all specimens of An. arabiensis (Rufisque) and An. stephensi (SDA-500), along with new
photos of STE2 and UCI strains of An. stephensi, were examined for the presence of dark
spots in abdominal segment VI (35 specimens of each of the two instars, from each of the
four strains).

2.3.2. University of South Florida

Additional An. stephensi (Nijmegen) and An. gambiae (G3) were reared in walk-in
chambers maintained at a constant temperature of 26 ◦C and a relative humidity of 80%,
with 12 h light and dark photoperiod. The larvae were reared on an aquatic fish hatchery
diet at a density of around 250 larvae per tray, holding 1.5 L of natural spring water. Upon
maturation, the pupae were segregated for adult emergence in a secured mosquito cage,
and on adult emergence, the mosquitoes were supplemented with 10% glucose solution
through cotton pads. The adult mosquito colonies were maintained as F1 generations. For
egg production to maintain the colony, 4- to 6-day-old female mosquitoes were fed with
sheep blood by artificial membrane and provided with an ovitrap, a source of water for
mosquito egg laying, two days post-blood meal [25]. Specimens of L4 An. stephensi (eight
male, eight female) were also reared to adulthood and examined to confirm their sex, based
on the presence/absence of dark spots in segment VI as observed in the larval stage.

2.3.3. University of Antananarivo

In addition to the validation and testing datasets described below, we also evaluated
species model specificity using wild L4 larvae collected in Antananarivo as part of our
surveillance efforts [26]. One full body photo was taken and analyzed per specimen to
emulate that of the tire larva, totaling 118 specimens/photos. These larvae were then
identified morphologically after individually rearing to adulthood (e.g., An. gambiae s.l.)
and/or by sequencing (i.e., An. arabiensis). The species and number of specimens/photos
were Ae. albopictus (28), An. arabiensis (6), An. gambiae s.l. (48), and Cx. quinquefasciatus (36).
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2.4. Imaging

All insectary and wild larvae were prepared and photographed (in dorsal view) in
accordance with GLOBE Observer in-app instructions, using smartphones equipped with
the same inexpensive 60× clip-on lens used in the 2020 observations and recommended
by GLOBE (step-by-step guide is available in (Figure 2, File S1 [18]). Specifically, individ-
ual larvae were isolated from their water source using a pipette, dropper, or spoon and
transferred to a white plate. Each larva was suspended in a small amount of water to
ensure proper separation and visibility of the setae during photography. As needed to
minimize its movement, the larva was chilled in its container using a surrounding ice bath
beforehand, and/or repositioned using a toothpick. Insectary larvae were photographed
using various Apple iPhones (CDC: 12, 12 Pro; USF: XR, 13 Pro Max) and wild larvae were
photographed using a Blackview BV6200, iPhone 6, LG V50 and V50S ThinQ, Samsung
Galaxy S7 Edge, Sony Xperia Z5 Compact, and Vivo Y21 (Apple: Cupertino, CA, USA;
Blackview: Shenzhen, China; LG: Seoul, Republic of Korea; Sony: Tokyo, Japan; Vivo:
Dongguan, China). As needed to improve focus, a washer was placed around the larva
to slightly elevate the iPhone XR and 13 Pro Max. Per the aforementioned guide, the 60×
clip-on lens itself was never extended on any phone, to standardize magnification.

For training, validating, and testing the species models, we used a total of 1680 photos
from 560 unique specimens: 35 specimens from each of the two instars (L3, L4) of the eight
species. At least two photos each were taken of three regions—full body, head/thorax, and
terminal abdominal segments—and the most in-focus photo of each region was chosen.
All models used these three photos per specimen, except for the genus (Anopheles, not
Anopheles) and 16-class models, which used only the full body and head/thorax photos
(1120 photos total for each; yielding 560 and 70 photos per class, respectively). The 3-class
model combined L3 and L4 instars, yielding 210 photos per class. All other models thus
used 105 photos per class (e.g., 1470 photos for the 14-class).

We split the dataset into training, validation, and testing images, maintaining the
ratio 80:8:12. To enhance model reliability and robustness, we then increased the training
dataset eight-fold (e.g., 9408 images for the 14-class) by using well-established test-time
augmentation techniques: blur, brightness/contrast, crop, flip horizontal, flip vertical,
rotate clockwise, rotate counterclockwise, and sharpen. For brightness/contrast augmenta-
tion, the code randomly choose one brightness value and one contrast value (from −0.2 to
0.1) and applied them to the image. We used the Python library Albumentations version
2.0.6 to apply a median blur to an image, effectively reducing noise while preserving
edges. By setting the blur limit at 31 to 51 pixels, we achieved significant blurring and
pronounced smoothing. Lastly, we manually cropped the original mosquito image with
a rectangular box to remove all possible background while ensuring the entire mosquito
body was contained.

For the sex model, we used a subset of the original An. stephensi photos, consisting
of 264 photos from the CDC (for training and validation) and 98 photos from the USF
(for testing) insectaries. These specimens were chosen based on the conspicuous presence
(male) and absence (female) of dark spots (testes) in abdominal segment VI. We also took
six photos each from the 16 additional L4 specimens (eight male, eight female) from the
USF insectary that were reared to confirm their sex. From each reared male and female
group, we used six specimens for training, one specimen for validation, and one specimen
for testing. In total, this yielded 458 photos from 64 specimens (Table 1). For training,
validation, and testing, we augmented our image data eight-fold. For each image, we first
horizontally mirrored it. Then, from each of these two images, we generated three new
images by rotating 90, 180, and 270◦, yielding eight images in total. While building up the
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datasets, we worked with the original images. After an original image was placed in a
certain dataset, the seven other versions of that image were kept in the same dataset.

Table 1. Sex model specimens (pre-augmentation).

Sex Training Validation Testing

Images Specimens Images Specimens Images Specimens

female 101 11 23 6 36 6

male 184 18 40 12 74 11

2.5. Artificial Intelligence

We used these larval photos to train deep learning models, specifically convolutional
neural networks (CNNs), which are effective for image classification. To identify the
species of the tire larva, we trained EfficientNet [27] and Inception-ResNet-V2 [28] models
(Table A1) with the hyperparameters shown in Table A2. For the former architecture,
we trained B0 (5.3 M parameters) and B4 (19 M) networks, which are generally better
suited to our training dataset sizes. Smaller networks like B0 are more suitable for datasets
with fewer classes, whereas medium-sized networks like B4 tend to perform better by
capturing more intricate features as class diversity increases. A model with a large number
of parameters (e.g., B7 with 66 M) is optimal for large-scale datasets, but when trained on a
small dataset tends to be overfitted and yields poor results on the testing dataset.

For visualization and validation, we utilized the explainable AI (XAI) techniques of
class activation mapping (CAM; [29]) and Grad-CAM [30]. These approaches yield heat
maps that illustrate the relative relevance of individual pixels to the classification. Heat
maps were generated by combining the activation maps from the last convolutional layer
with class-specific weights derived from either learned parameters (CAM) or gradient
information (Grad-CAM). The resulting maps were then normalized, upsampled to the
input resolution, thresholded, and superimposed on a grayscale version of the original
image at 50% opacity.

To identify the sex of the tire larva, we used transfer learning, specifically an Xcep-
tion [31] model pre-trained on the ImageNet dataset [32]. On top of the base model
convolution layers, we added four dense layers (Table A3). The hyperparameters are
shown in Table A4.

Prediction confidence was calculated as the average classification probability (softmax
output) across the 8× augmentation images of the tire larva. Initial evaluation of architec-
tures also included ResNet50 for the species models and EfficientNet and VGG16 for the
sex models, but these proved to be suboptimal and were not pursued further.

3. Results
Out of the 118 wild larvae we collected and reared in Antananarivo, the 16-class model

misclassified as An. stephensi only one photo/specimen (of Cx. quinquefasciatus), yielding
false positive rates of 0% for the Anopheles subset and <1% overall (0/54, 1/118). Notably,
all 11 species models classified the tire larva as An. stephensi (Table 2). The highest level of
confidence (99.34%) was achieved by the EfficientNet-B0 6-class model, with validation
and testing accuracies of 96.30% and 95.83%.
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Table 2. Species model results, ranked by classification confidence of the tire larva.

Architecture Model Classes Accuracy
(Val) %

Accuracy
(Test) % Conf % Classification

EfficientNet-B0 6-class (ara, gam, ste) ×
(L3, L4) 96.30 95.83 99.34 An. stephensi

EfficientNet-B0 2-class, L4 gam, ste 100 91.67 99.27 An. stephensi

EfficientNet-B0 3-class ara, gam, ste 96.30 91.67 98.61 An. stephensi

EfficientNet-B4 8-class (ara, fun, gam, ste) ×
(L3, L4) 97.22 97.92 97.90 An. stephensi

EfficientNet-B4 10-class (alb, ara, fun, gam, ste)
× (L3, L4) 97.78 98.33 96.29 An. stephensi

Inception-
ResNet-V2 4-class (gam, ste × (L3, L4) 97.22 97.92 95.19 An. stephensi

EfficientNet-B4 16-class
(tar, aeg, qui, alb, ara,

fun, gam, ste) ×
(L3, L4)

97.92 92.96 90.64 An. stephensi

EfficientNet-B4 14-class (aeg, qui, alb, ara, fun,
gam, ste) × (L3, L4) 99.21 97.62 89.87 An. stephensi

EfficientNet-B4 12-class (qui, alb, ara, fun, gam,
ste) × (L3, L4) 99.03 95.14 88.86 An. stephensi

EfficientNet-B0 4-class (gam, ste) × (L3, L4) 97.22 93.75 88.83 An. stephensi

EfficientNet-B0 2-class, L3 gam, ste 100 100 67.95 An. stephensi

EfficientNet-B0 genus Anopheles, not
Anopheles 100 100 99.09 Anopheles

Only taxonomic (i.e., not including instar) classifications were used to calculate the validation and testing
accuracies for each model, as well as the prediction confidence (conf) for the tire larva specifically. The genus
model used all eight species. aeg = Ae. aegypti, alb = Ae. albopictus, ara = An. arabiensis, fun = An. funestus, gam = An.
gambiae, ste = An. stephensi, qui = Cx. quinquefasciatus, tar = Cx. tarsalis, L3 = third instar, L4 = fourth instar.

The tire larva’s precise instar (L3 vs. L4) could not be ascertained by multiple mosquito
entomologists. However, 6/8 (75%) of our species × instar models predicted L4 (L3 was
predicted by the 4-class EfficientNet-B0 and 16-class models). Furthermore, there is a much
higher confidence for the An. stephensi L4 vs. L3 classification by the highest-confidence
6-class model (Table 3) (82.56% vs. 16.78%) and especially the 8-class model (97.25% vs.
0.65%). There is also a much higher confidence for the An. stephensi classification by the
2-class L4 vs. 2-class L3 model (99.27% vs. 67.95%; Table 2).

Table 3. EfficientNet-B0 6-class species model results for the tire larva, ranked by confidence.

Class
Confidence (%)

Species and Instar Species-Only

An. stephensi L4 82.56%
99.34%

An. stephensi L3 16.78%

An. arabiensis L4 5.59 × 10−1

6.42 × 10−1
An. arabiensis L3 8.34 × 10−2

An. gambiae L4 9.42 × 10−3

9.65 × 10−3
An. gambiae L3 2.24 × 10−4
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The Grad-CAM/CAMs highlighted pixels of the tire larva—notably including ab-
dominal segment VI—as most important to the species classification (Figure 2A,B, red).
Additionally, the tire larva was classified as male with 100% confidence by our Xception
sex model, with validation and testing accuracies of 95.44% and 84.89% (Table 4).

 

Figure 2. Tire larva photo with explainable artificial intelligence visualizations. Heat maps denote
relative importance of individual pixels to the species classification, with warmer colors correspond-
ing to higher weights. (A) Grad-CAM from the 6-class EfficientNet-B0 model (species confidence
99.34%), with a threshold of 185. (B) CAM from the 4-class EfficientNet-B0 model (species confidence
88.84%), with a threshold of 165. Note that these heat maps highlight segment VI where the testes are
located. (C) Arrows denote testes. (D) Male and female L4 larvae of An. stephensi (Nijmegen strain),
illustrating the presence (arrows) and absence of testes. Both specimens were photographed using a
smartphone with a 60× clip-on lens, then reared to adulthood to confirm sex. Sharpening and/or
improved contrast was applied to the images in (C,D).

Table 4. Sex model results.

Set Accuracy F1-Score Precision Sensitivity Specificity MACC 1

Validation 95.44 96.49 94.33 98.75 89.67 90.18

Test 84.89 89.20 85.92 92.74 68.75 64.70
1 mean average correlation coefficient.

Informed by these results, we subsequently reexamined the original tire larva photo
and discovered dark spots in segment VI where the heat maps were concentrated
(Figure 2A–C). These spots are identical to the dark brown oval spots in segment VI
that correspond to the testes of An. stephensi [33–35] (Figure 2D). Furthermore, we observed
similar dark spots in segment VI in half of the L3 (53/105, 50.48%) and L4 (60/121, 49.59%)
specimens examined from all four strains of An. stephensi (Nijmegen, SDA-500, STE2, UCI).
Approximately one-quarter portion (32/113, 28.32%) of specimens with dark spots had a
spot that appeared darker or only on one side. None of the 70 specimens of An. arabiensis
(Rufisque) exhibited dark spots in segment VI. However, six specimens (9%) exhibited faint
yellow localized there.

4. Discussion
4.1. Artificial Intelligence

The consensus of classifications, coupled with the high confidence, high accuracy,
extremely low false positive rate, and XAI results, suggests that the identity of the tire
larva is An. stephensi (although it is not possible to definitively confirm this without
genetic analysis). Across multiple neural network architectures and models, EfficientNet
yielded the best performance for classifying species compared to Inception-ResNet-V2
(aside from the 4-class models) and ResNet50, while Xception yielded the best performance
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for sexing larvae compared to EfficientNet and VGG16. Compared to Inception-ResNet-V2,
EfficientNet trains faster and typically achieves higher performance on benchmark datasets
commonly used to evaluate state-of-the-art models. The added complexity of EfficientNet is
better suited for classifying species, as it has more layers to increase the receptive field and
extract a richer diversity in image datasets. This architecture also employs a technique to
uniformly scale all dimensions of depth, width, and resolution, enabling it to capture more
fine-grained spatial patterns. By contrast, the Xception architecture employs depthwise
separable convolutions, which is better tuned to learn a limited set of features at a specific
location. In the context of sexing larvae, our Xception model is better equipped to learn the
presence or absence of testes at segment VI (presumably yielding its superior classification
performance), and the lower complexity is better suited for smaller datasets with only two
classes (e.g., male and female).

The XAI results validated that the classifications were indeed based on the anatomy,
and even revealed unexpected and useful anatomical information, demonstrating the
utility of these techniques for mosquito larvae (as we have demonstrated for adults:
Figure 6E [18]). The Grad-CAMs/CAMs that best highlighted the tire larva testes were
from the all-Anopheles models (e.g., 6- and 4-class). We infer that this may be due to the
other anatomical differences, such as the presence of a siphon, that distinguish the other
genera included in the higher-class models. Adding more classes to the model also means
that there are more parameters (necessitating more training optimization) and a bigger
dataset with additional variation, which may make the multi-class classification task more
complex and explain why better Grad-CAMs/CAMs were generated by the lower-class
models. We also tried cropping the tire larva image, but the uncropped Grad-CAMs/CAMs
were consistently better, presumably because uncropped images were used in 7/8ths of the
training set.

Future work using XAI approaches and/or novel applications of other techniques
such as geometric morphometrics [36] may prove similarly useful in revealing anatomical
insights, and could potentially even inform future identification keys. Other promising
practical applications include automated AI-enabled sex sorting in the larval stage, which
would prove valuable for eco-friendly techniques for suppressing An. stephensi populations.
While not yet established and available, these potential approaches include Wolbachia
infection [37], genetic modification [38], and the sterile insect technique [39] (see also the
heterospecific boosted version [40]). With respect to hardware, our future efforts will focus
on further development and deployment of AI-enabled smart traps for targeting adult
An. stephensi and other vector, invasive, and/or marked mosquitoes.

4.2. Sexing

Our XAI-enabled detection of testes in the tire larva provides independent corrobora-
tion of the male classification by the separate sex model. Such dark testes in certain species
of mosquito larvae were first described and depicted in 1912, notably in An. stephensi and
other Indian anophelines such as An. culicifacies (Giles, 1901) [35,41]. Proposed as a sexing
marker, this feature was reported as most easily seen from the ventral side of abdominal
segment VI, and consisting of a hard sheath that enclosed the testis and contained dark pig-
ment. Rishikesh in 1959 (Figure 1 [34]) described and depicted this structure in laboratory
colonies of Indian An. stephensi s.s. as a tough, outer envelope with a cytoplasm containing
a “dense aggregate of yellow and dark pigment granules” (presumably xanthommatin and
an ommin [42]).

More recently, [33] rediscovered these sexually diagnostic spots in both laboratory
and field-collected specimens of An. stephensi, as well as An. culicifacies and An. subpictus
(Grassi, 1899) (apparent in L3 and L4 but not in L1 and L2 of all species). This is interesting
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given that all three species have a type locality of India [43], from or around which they
potentially originated, although each species belongs to a separate series of the subgenus
Cellia [43].

With respect to the likelihood of the tire larva belonging to An. culicifacies or An.
subpictus, neither have been reported in Madagascar [43]. Furthermore, An. culicifacies is
typically found in non-urban settings such as streams and irrigation channels [44], and
belongs to the Myzomyia series [43], thus if the tire larva were An. culicifacies, it presumably
would have been classified by our models as the most closely related An. funestus. Anopheles
subpictus belongs to the Pyretophorus series [43], thus if our tire larva were An. subpictus,
it presumably would have been classified by our models as the more closely related An.
arabiensis or An. gambiae s.s.

Across all four strains of An. stephensi herein, half of the 226 specimens exhibited dark
spots corresponding to testes. Conversely, there was a complete absence of such dark spots
among all 70 specimens examined of An. arabiensis (a species not documented in India).
The faint yellow observed in segment VI among a small minority (9%) is interpreted as
much less conspicuously pigmented testis sheaths in this species and/or strain. Additional
research is required to ascertain the presence and degree of testis sheath pigmentation
among Anopheles spp., as well as any influence of environmental or epigenetic factors.

4.3. Surveillance

Catalyzed by the initial AI classifications of the tire larva as a suspect An. stephensi,
from July 2022–July 2023 we conducted follow-on systematic larval surveillance in all
six districts of Antananarivo, starting at the locations of the 8 March 2020 observations;
that separate study is detailed in [26]. To summarize: 2856 potential breeding habitats
were inspected, 1886 of which were artificial containers (barrels, cut plastic canisters,
flowerpots, metal containers, plastic bowls, plastic buckets, small plastic containers, tires,
and used bottles). A total of 27,742 larval specimens were collected from three genera (Aedes,
Anopheles, and Culex), with the most abundant species being Cx. quinquefasciatus (53%) and
Ae. albopictus (26%). Of the 7290 larvae of the container-breeding species Ae. albopictus, 6446
(88%) were found in artificial containers, including 2186 from tires. Conversely, not a single
one of the 1270 anopheline larvae was found in any of the 1886 artificial containers sampled,
which included 626 tires, barrels, and buckets. No specimens of An. stephensi were detected.
However, those systemic absences of any other anopheline larvae in artificial containers in
2022–2023, coupled with the presence in 2020 of >132 anopheline larvae in a tire (5), barrel
(27), and bucket (>100), supports the hypothesis that the photographed tire larva could
potentially represent the container-breeding species An. stephensi.

If any of these larvae detected in March 2020 do indeed represent An. stephensi,
the absence of this species during the 2022–2023 surveillance could be due to the local
population having died out (or having never become established in the first place). A
contributing factor may have been the artificial container habitats being eliminated—not
just those officially reported as eliminated herein and elsewhere [22], but the many others as
part of the concentrated community efforts at that time to mitigate the container-breeding
Zika vector, Ae. albopictus. Unlike Aedes and Culex, no other Anopheles larvae were observed
in any artificial containers by the EntoAnkatso group after their 2019–2020 campaign.

Furthermore, the introduction of An. stephensi into the capital city of Antananarivo
could have been due to international air travel or transport. Alternatively, it could be
explained by transport of artificial containers or livestock from a seaport. It is worth noting
that eggs of An. stephensi can survive in the absence of water for up to approximately
two weeks [45]. Introduction could even have been caused by long-range easterly wind
dispersal of adult mosquitoes from the nearest and main seaport Toamasina—as has been
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hypothesized for the isolated record of An. stephensi in Nigeria, which was >100 km from
the nearest seaport and major airport and was not on a main road [46]. Three similarities
shared with the Anopheles larvae in Madagascar herein are that these Nigerian specimens
of An. stephensi (n = 14) were detected in only one area of the country (at two breeding
sites, [47]), in the same year of 2020, and yet no further specimens of An. stephensi have
been reported from thorough surveillance in Nigeria since [48].

Our team’s surveillance efforts in Madagascar also included expanding citizen science
contributions through four local workshops at an elementary school and universities in
Antananarivo and Antsirabe, translating educational and promotional materials into French,
distributing hundreds of 60× clip-on lenses for photographing larvae using Mosquito
Habitat Mapper, and distributing fliers promoting all the app platforms and GMOD. We
are deploying similar strategies in other high-risk African countries as well, including the
nearby island nation of Mauritius [45].

In total, >1500 lenses were provided to 18 African nations. We have also been encour-
aging and monitoring input across all three global citizen science platforms for mosquitoes:
Mosquito Habitat Mapper, Mosquito Alert, and iNaturalist. For the iNaturalist platform, ef-
forts included our project mosquitoesInAfrica.org (accessed on 15 August 2025)—designed
to generate observations and identifications of Anopheles mosquitoes and particularly
An. stephensi in Africa—which we launched as an annual campaign on 1 August 2022 [17].
During this campaign, we specifically monitored observations from Madagascar, which
yielded a previously undescribed phenomenon of mosquito bite-induced color change
in chameleon skin, underscoring the utility of citizen science in yielding serendipitous
discoveries [49].

4.4. Recommendations

Global health organizations have long stressed that involvement of the community
in the surveillance and mitigation of standing water breeding sites is critical to effective
management of mosquito-borne diseases [50–52]. Indeed, a recent systematic review of
community-based interventions in mosquito control demonstrated the positive impact of
public engagement in reducing the prevalence of vectors and diseases in communities [53].
The case study reported herein demonstrates the importance of citizen science engagement
not only for local health outcomes, but also for the research-creating tools that support
global strategies to combat vector-borne diseases in the context of funding gaps and
emergencies [54].

As mentioned above, larval surveillance is the main approach for detecting An. stephensi.
The GLOBE Observer app’s Mosquito Habitat Mapper tool, put into the hands of volunteers
in communities at risk of disease, can augment An. stephensi training, surveillance, and
water source reduction; efforts that aid in local eradication and halting the expansion of
this invasive and pesticide-resistant malaria vector [15]. Indeed, for citizen scientists, larval
surveillance is easier than adult surveillance in many ways, as it does not require traps or
detailed understanding of mosquito ecology, and it also results in immediate vector control
through habitat mitigation. Local entomological surveillance programs can also use citizen
science reports in the context of their rigorous surveillance to identify potential hotspots
for investigation.

For future citizen science efforts directed toward detection or monitoring of An. stephensi,
we recommend that at least six photos be taken per larva (two each of full body,
head/thorax, and terminal abdominal segments), to ensure that all aspects of the anatomy
are captured in-focus, as well as to generate a consensus of AI classifications (see third link
below). For adult Anopheles found in urban or livestock settings, a smartphone equipped
with a 60× clip-on lens can also provide sufficient magnification to capture the diagnostic
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spots on the wings and palps of An. stephensi (Figure 1 [17]). In the absence of a 60× clip-on
lens, a high-powered magnifying glass or reversed binoculars can serve as alternatives for
photographing larval or adult mosquito anatomy.

Such deployment of existing technologies to conduct enhanced monitoring of invasive
and vector mosquitoes may continue to prove useful for targeted surveillance stratification,
and as a local or regional launching point for national surveillance programs. Toward that
end, we have also integrated multiple systems: our AI algorithms automatically analyze
uploaded photos from the Mosquito Habitat Mapper, iNaturalist, and Mosquito Alert data
streams to provide a real-time early warning system for larval and adult An. stephensi. To
help further scale these surveillance efforts for others in Africa [17] and beyond, we provide
the following free resources (all accessed on 7 May 2025):

1. mosquitodashboard.org: Global Mosquito Observations Dashboard (GMOD), a map-
ping interface for visualizing and downloading mosquito data from four citizen
science platforms [18,23], including the GLOBE Observer app’s Mosquito Habitat
Mapper and Land Cover tools;

2. mosquitoID.org: AI tools for identifying both larval and adult An. stephensi [55], as
well as identifying the anatomy of any larval mosquitoes [20] and the gonotrophic
stage of any adult mosquitoes [56].

3. observer.globe.gov: GLOBE Observer app’s Mosquito Habitat Mapper tutorials and
other materials, including protocol eTraining modules [57,58];

We would also like to echo previous guidelines that any Anopheles spp. larvae found in
artificial containers should be retained and/or reared for identification, and any unexpected
increase in malaria cases—especially in an urban setting—should induce larval surveillance
for An. stephensi and consideration of this species as a potential cause [14,16]. Additionally,
more research is required to elucidate the taxonomic distribution of dark testes among
Anopheles spp.

We also encourage the collection of adult samples of suspect An. stephensi in new
areas when possible. When genetic analysis is not feasible and manual morphological
identification is required, we recommend keys for Anopheles in the Afrotropical Region [59]
and Madagascar [60], as well as reference images of diagnostic features for An. stephensi
specifically (Figure 1 [17], Figures 3 and 4 [61]).

5. Conclusions
Given that the tire larva was disposed of years prior, we can never know the exact

species with absolute, molecular certainty. However, all available evidence suggests that
the mosquito may be An. stephensi, as it is an anopheline larva (1) from an artificial container
in an urban setting; (2) found with and near >131 other anopheline larvae across multiple
other types of artificial containers (meaning that the observation was not just a single
isolated incident); (3) in a region both suitable and high risk for An. stephensi invasion;
(4) with dark spots in segment VI identical to the testes of An. stephensi (and highlighted
by the XAI heat maps); and critically, (5) all 11 of our AI models predicted the species to
be An. stephensi with very high confidence and accuracy, and included a very low false
positive rate (<1%); and (6) no other species of anopheline larvae were detected in any of
the ~2 K artificial containers sampled during the subsequent year-long surveillance in the
surrounding area and all six districts of Antananarivo.

Together, this case study demonstrates the promise of artificial intelligence for detect-
ing artificial container-breeding disease vectors, especially when integrated with global
citizen science efforts implemented via top-down and bottom-up approaches. Ultimately,
our aim is that these next-generation digital tools and resources will be useful to commu-
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nities and control programs for combating the spread of An. stephensi and malaria across
the globe.
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L1–L4 larval instar stages, one to four
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UA University of Antananarivo
USF University of South Florida
XAI explainable artificial intelligence
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Appendix A

Table A1. Species model architecture.

Layer Input Size Output Size

Base CNN blocks 224, 224, 3 7, 7, 1280
GlobalAveragePooling2D 7, 7, 1280 1280
dense 1 (Dense) 1280 256
batchNorm1 (BatchNormalization) 256 256
dropout 1 (Dropout) 256 256
dense 2 (Dense) 256 128
batchNorm2 (BatchNormalization) 128 128
dropout 2 (Dropout) 128 128
dense 3 (Dense) 128 64
batchNorm3 (BatchNormalization) 64 64
dropout 3 (Dropout) 64 64
concatenate_1 (Concatenate) 256, 128, 64 448
dense 4 (Dense) 448 6

Table A2. Species model hyperparameters.

Hyperparameter Value

Loss Sparse Categorical Cross-entropy
Optimizer Adam Optimizer
Batch Size 16
Epochs 600
Learning-rate 1 × 10−5

Table A3. Sex model architecture.

Layer Input Size Output Size

Xception Conv blocks 299, 299, 3 7, 7, 512
global average pooling2d 7, 7, 512 512
dense 1 (Dense) 512 256
dropout 1 (Dropout) 256 256
dense 2 (Dense) 256 128
dropout 2 (Dropout) 128 128
dense 3 (Dense) 128 64
dropout 3 (Dropout) 64 64
dense 4 (Dense) 64 2
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Table A4. Sex model hyperparameters.

Hyperparameter Value

Loss Binary Cross entropy
Optimizer Adam Optimizer
Momentum 0.9
Epochs 1100
Learning-rate 0.0001
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